First Global Monthly TSI / SYNI / AVG @ SCF "Diurnally Resolved Radiative Transfer"

SARB: Fred Rose, Tom Charlock, Seiji Kato, Tom Caldwell, Scott Zentz TISA: Dave Doelling, Cathy Nguyen, Raja Raju

 5^{th} CERES-II Science Team Meeting Crowne Plaza at Ft. Magruder, Williamsburg, Va. $May~2^{nd}-4^{th}~2006$

TSI: Cloud & Toa Flux Inputs for SYNI "Synoptic Sarb"

- TOA Flux

- ~Twice daily CERES
- 3 hourly GEOstationary Flux
 - narrowband to broadband
- Other times interpolated

- Clouds

- MODIS : (Multi-channel)
 - Fraction, Optical depth, Height, Phase, Part. Size
- GEOstationary: (Vis & IR only)
 - daytime: Fraction, Optical depth, Height
 - night: Fraction, Height

TSI: Calibrate GEO visible radiances against MODIS

- Geostationary Visible **not** calibrated onboard satellite
- Calibrate to MODIS over oceans to mitigate spectral response function differences between geostationary satellites
- Regress Co-located, Co-angled, Co-incident radiances within 15 minutes
- Validate by cross-calibrating geostationary satellite pairs

GOES-8 visible calibration with Terra-MODIS

Degradation rate = 365*1.136e-4 = 4.15%/year

TSI: Geostationary TOA SW Fluxes

- GEO Narrowband radiances converted to broadband
 - Modtran/Disort based (S.Kato)
 - Based on angles, surface type, ozone, cloud amount, phase, optical depth and GEO satellite spectral response.
- Invert broadband radiance to broadband flux
 - CERES TRMM ADMs
 - Using GEO Cloud product
- Shortwave Flux is normalized to CERES observations

Geo SW Normalization

- GEO clear-sky albedos are replaced with CERES
 - Land spectral differences are difficult to account for in GEO
 - No day to day variation in the clear-sky albedo
- Snow regions use the non-GEO method
 - GEO cloud properties over snow are suspect
 - Bright surfaces have little diurnal variation
- Perform regressions of GEO-derived and CERES matched SW fluxes
 - Slope and offset used to account for GEO visible calibration inadequacies and regional NB to BB variability
 - 5x5 surrounding regions and matches within 90 minutes
 - Regions are limited to GEO-satellite, and GEO-type
 - No glint matches are used
 - Regions with insufficient matches use 5° zonal regions

TSI: Geostationary TOA LW Fluxes

- GEO satellites have onboard IR calibration
- IR radiances are converted to narrowband fluxes using simple limb darkening model
- Apply empirical NB->BB relationship which includes a water vapor term
 - Currently one regression will be enhanced in future editions.
- Normalize GEO derived interpolated fluxes with CERES at coincident times

SYNI Product

- Hourly radiative transfer
 - Fu-Liou code
- CERES Equal Area grid (~1deg)
- TSI Cloud Inputs
 - CERES(12hr),+GEO(3hr) + Interpolated
- MOA Geos_4.0.3 Atmosphere
 - SMOBA Ozone
- Modis & Match Aerosols
- Grid Average Surface properties

Fu-Liou Broadband Radiative Transfer

- Gamma weighted 2-Stream (SW), 2/4 Stream (LW)
 - Treats sub-computational scale Inhomogeneous clouds (S.Kato)
- 32 Bands: 18 SW, 14 LW , 3 of 14 LW in WN
 - Enhanced output of PAR and UVA, UVB (W.Su)
- Shortwave: $(0.17 4.0 \text{ or } inf)\mu$ [0 or 2500-57000 cm-1]
 - HITRAN 2000 (H_2O) w/(O_2 , CO_2 , CH_4)Fixed
 - JPL(1994) O₃ uv , WMO(1985) O₃ vis
- Longwave $(0-2850\text{cm}-1)(3.5\mu \text{Infinity})$
 - H₂0 ,CO₂ ,O₃ ,N₂0 ,CH₄ ,CFCs, H20 continuum)
- Optical Properties: spectral (β , ω , g)
 - Water Cloud (Y.Hu)
 - Ice Cloud (Q.Fu 1996, Dge)
 - Aerosol Optical Properties
 - OPAC, Tegin&Lacis, d'Almedia
- Major Revisions
 - 10 visible SW bands reworked for O₃ and rayleigh in 1995
 - Near-Ir 0.7-1.3μ subdivided into 4 bands in 2005
- Online Version http://www-cave.larc.nasa.gov/cave

SYNI Surface Optics

Scene Id:

- IGBP
- Daily Snow Ice maps (NSIDC microwave)
- Threshold of Cloud WG Daily 0.63 & 1.6 overhead sun albedo

Broadband Surface Albedo:

- COART ocean surface albedo via look up table
 - (tau, solar zenith angle, windspeed)
- Clear land+snow
 - CERES TOA with LaRC Fu-Liou atmosphere correction LUT
- Cloudy land: monthly min clear sky albedo
 - diurnal model

Spectral Albedo Shape

- COART (Ocean, Snow, Sea Ice)
- CARE Experiment (grassland), Bowker (all other IGBP types)

Emissivity

- Cloud WG 12 month seasonal maps (3 window bands)
- SOFA (IGBP based for other LW bands)

SYNI Aerosols

- MODIS (MOD04)
 - multi-channel AOT (7 wavelength ocean, 3 land)
- MATCH Daily Assimilation
 - Constituents
 - Small & Large Dust, Sea Salt, Sulfate, Black Carbon, Hydrophilic & Hydrophobic organic carbon
 - Basis for assignment of optical properties (β, ω, g)
 - Tegin&Lacis, OPAC
 - MATCH optical depth used over high albedo land or ocean sunglint where MODIS AOT's not available
 - Vertical profiles

First Run Issues

- First full end to end run attempt at SCF
 - FSW →TSI →SYNI → ZAVG → AVG
 - Data month July 2002

• TSI:

- Unintended use of LOCAL time not GMT reference frame !!
- Will add MODIS AOT's
- Will add Clear Geo Radiances for skin temperature retrieval
- Will revise record indexing to Equal Area to reduce file size

• SYNI:

- CRS like NOT grid averaged)Surface Optical properties
- No MODIS Aerosol were available on TSI file
 - Instead used Stowe single wavelength AOTs over ocean
- GMAO GEOS4.0.3 6 hourly skin temperatures used
 - 3 hourly to be used in future runs
- 36 model level output (huge file sizes)
 - 5 level in future runs (toa,70,200,500,.sfc)

First Look at SYNI Data

- Example time-height flux profile
- Scatterplots
 - Subset (5 deg in latitude)
- Global Maps
 - TSI, SYNI, SRBAVG
 - NOT from AVG Product

Example Time Height Profile Longwave Flux (36 level data)

Synoptic Sarb 200207Z (90S :90N: by 5 (proc:Mar 14th 2006 SGI)

Synoptic Sarb 200207Z (90S :90N: by 5 (proc:Mar 14th 2006 SGI)

Synoptic Sarb 200207Z (90S :90N: by 5 (proc:Mar 14th 2006 SGI)

SYNI 200207 Count w/ANY Obs.

SYNI 200207 Count w/CLEAR Obs.

SYNI 200207 Count w/CERES Obs.

SYNI 200207 Count w/GEO Obs.

TSI 200207 Shortwave TOA Reflected Total Sky Monthly Mean

SRBAVG;Total-sky TOA SW Flux - GEO Interpolation

TSI 200207 Outgoing Longwave Total Sky Monthly Mean

SRBAVG: Total-sky TOA LW Flux - GEO Interpolation

YNI 200207 UNTuned-Obs Shortwave TOA Reflect SYNI 200207 UNTuned-Obs Longwave TOA Monthly Mean

Mean= 94.16

120

160

ICERES/sarb/home/rose/syn/tsisynavg.4.avg Thu Mar 30 08:55:50 2006 ICERES/sarb/home/rose/syn/tsisynavg,4.avg Thu Mar 30 08:55:52 2006

SYNI 200207 UNTuned-Obs Shortwave TOA Reflected Monthly Mean (CERES)

SYNI 200207 UNTuned-Obs Shortwave TOA Reflected Monthly Mean (GEO)

SYNI 200207 UNTuned-Obs Longwave TOA Monthly Mean (CERES)

SYNI 200207 UNTuned-Obs Longwave TOA Monthly Mean (GEO)

Man Mar 27 08:50:01 2006 ICERES/sarb/home/rose/synitsisynavg 2 avg Man Mar 27 08:50:04 2006

SYNI 200207 UNTuned-Obs Shortwave TOA Reflected Monthly Standard Deviation (CERES)

SYNI 200207 UNTuned-Obs Longwave TOA Monthly Standard Deviation (CERES)

SYNI 200207 UNTuned-Obs Shortwave TOA Reflected Monthly Standard Deviation (GEO)

SYNI 200207 UNTuned-Obs Longwave TOA Monthly Standard Deviation (GEO)

ICERES/sarbthome/rose/synitaisynavg.3.std Tue Mar 28 11:08:03 2006

SYNI 200207 UNTuned-Obs Longwave TOA Monthly Mean (CLEAR)

YNI 200207 UNTuned-Obs Shortwave TOA Reflect
Monthly Standard Deviation (CLEAR)

SYNI 200207 UNTuned-Obs Longwave TOA Monthly Standard Deviation (CLEAR)

ICERES/sarb/home/rose/syn/tsisynavg.4.std Thu Mar 30 08:56:45 2006 ICERES/sarb/home/rose/syn/tsisynavg.4.std Thu Mar 30 08:56:45 2006

SYNI 200207 UNTuned Surface SW Down Total Sky Monthly Mean

SYNI 200207 Total Cloud Area %

SYNI 200207 UNTuned Surface LW Down Total Sky Monthly Mean

SYNI 200207 Inital Aerosol Optical Depth

SYNI 200207 TOA SW Aerosol Forcing Clear Sky Monthly Mean

SYNI 200207 SFC SW Cloud Forcing Monthly Mean

SYNI 200207 SFC SW Aerosol Forcing Clear Sky Monthly Mean

I/CERES/sarb/home/rose/syn/ts/siynavg.4.avg Thu Mar 30 08:55:07 2006 I/CERES/sarb/home/rose/syn/ts/siynavg.4.avg Thu Mar 30 08:55:04 2006

Summary

- First Run
- Has Known Problems
- Encouraging regardless
- Major cross group interfaces resolved